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1 Overview

In class, we have discussed the experimental observations regarding the temperature de-
pendence of charge mobility in molecular and polymeric organic semiconductors. Different
trends are observed for different classes of materials and in different temperature regimes.
A number of models have been derived to describe these trends, including the band and
band-like transport model, multiple trap and release (MTR), variable range hopping (VRH)
theories, Bässler’s Gaussian disorder model (BGD), percolation, mobility edge, Marcus-type
charge transfer, and nuclear tunneling.

The paper of Liu et al., upon which this reader is based, outlines existing models for
transport in single crystal, polycrystalline and amorphous materials.[1]. A generalized Ein-
stein relation for charge mobility in organic semiconductors is derived and shown to replicate
the results obtained with multiple pre-existing models. These models had been developed
to describe charge transport in materials with various degrees of disorder. By introducing a
delocalization parameter (∆D) and variance (∆E) to tune the shape of the density of states,
the authors demonstrate that it is also possible to replicate experimentally reported mobili-
ties, including trends regarding the temperature- and gate-voltage-dependence of mobilities
for a given material. In particular, for a given ∆E, it is shown that for most values of ∆D,
the mobility increases as temperature increases, while at very high degrees of delocalization
(∆D −→ 1), the carrier mobility increases with decreased temperature. This inverse temper-
ature dependence is an indication of ’band-like’ transport, as is the case for a small number
of organic materials, such as C8-BTBT, naphthalene, rubrene, TIPS-pentacene, and the
polymer IDTBT, while the direct temperature dependence is representative of a thermally-
activated charge transport mechanism. Altogether, this model provides a holistic view of
charge transport.

2 Einstein relations

To study the temperature dependence of the charge mobility, one must find an equation that
relates the mobility µ of a charge q to the temperature T . Einstein equations provide such a
relation. From the most general point of view, mobility in a semiconductor can be expressed
by the following generalized Einstein relation:

µ =
qD

n(E∗
F , T )

∂n(E∗
F , T )

∂E∗
F

(1)
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where n is the charge carrier concentration and (E∗
F ) is the quasi-Fermi energy, not the

Fermi energy (EF ). By definition, the Fermi energy is the energy at which a corresponding
state has a 50% probability of being occupied at thermal equilibrium. In a semiconductor
with a fully occupied valence band and an unoccupied conduction band, EF is located at the
midway point between the edges of the conduction band and valence band (even though there
may be no available state at that energy). The Fermi energy is therefore a material-dependent
and constant value. When a voltage bias is applied on the semiconductor, the system is
brought out of thermal equilibrium and the ‘state’ with a 50% occupation probability is no
longer the one at the Fermi level but at the quasi-Fermi energy, given by:

E∗
F = EF − qV (x) (2)

We propose a demonstration of the generalized Einstein relation (1) in the following box.

The net current density J in a semiconductor is the sum of the drift (Jdrift) and diffusion
(Jdiff ) currents:

J = Jdrift + Jdiff (3)

where Jdrift is given by Ohm’s law:

Jdrift = qµnE (4)

and Jdiff is given by Fick’s law:

Jdiff = −qD
∂n

∂x
(5)

in which n is the charge carrier density (described below), D is the diffusion coefficient, E is
the electric field and x is the coordinate axis. At equilibrium, the total current is 0, therefore
Eq. 3 can be rewritten as:

qµnE = qD
∂n

∂x
(6)

The electric field E is the opposite of the derivative of the potential V (x) with respect to x,
which we replace accordingly on the left side. Given that the charge carrier concentration is
a function of the quasi-Fermi energy, the quasi-Fermi energy is a function of the potential
and that the potential is a function of x, we can apply the chain rule to the derivative on
the right-hand side:

− qµn
∂V (x)

∂x
= qD

∂n

∂E∗
F

∂E∗
F

∂V (x)

∂V (x)

∂x
(7)

By simplifying, we obtain

− µn = D
∂n

∂E∗
F

∂E∗
F

∂V (x)
(8)

The derivative of E∗
F with respect to V (x) in Eq. 8 leaves us with −q. After rearranging,

the Einstein relation therefore describes charge mobility in a semiconductor:

µ =
qD

n(E∗
F , T )

∂n(EF , T )

∂EF

(9)
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In the particular case of a crystalline, defect-free and non-degenerated semiconductor,
the general Einstein relation simplifies into the classical (Einstein-Smoluchowski) form:

µ =
qD

kT
(10)

In the paper, Lui et al. establish a new form of a general Einstein relation, connecting
the mobility to temperature-dependent parameters such as the diffusion coefficient, in the
restricted case of disordered organic semiconductors.

3 Generalized Einstein relation in disordered organic

semiconductors

The diversity of local environments surrounding each molecule in a bulk organic semicon-
ductor leads to fluctuations of the molecular electronic states. Then, an appropriate way
of describing the electronic structure of the semiconductors is to use the density of states
(DOS, N(E)) which gives the number of electronic state at a given energy. In organic
semiconductors this density of states is usually well-described by a Gaussian distribution:

N(E) =
Nt√
2π∆E

exp

[
− (E − E0)

2

2∆E2

]
(11)

where ∆E is the variance of the DOS Gaussian and E0 is the energy marking the center
of the distribution. Nt is the ’characteristic’ (i.e. material-dependent) band DOS.

The DOS is used, in combination with a distribution function f(E, T ) determining the
probability of occupation of a state at the energy E at T , to calculate the charge carrier
density n, which is then given by:

n =

∫ +∞

−∞
N(E)f(E, T ) dE (12)

The most commonly used distribution function to describe organic semiconductors is the
Fermi distribution, which takes the following form:

f(E, T ) =

[
1 + exp(

(E − E∗
F )

kT

]−1

(13)

The shape of this distribution and its derivative are shown in Figure 1. We notice that at
low temperatures, the distribution is essentially a step function, where the quasi Fermi level
marks the boundary between fully occupied and unoccupied states. At higher temperature,
the probability of occupation of a state above the quasi Fermi energy is no longer null, so
if states exists in this region the conduction band is now partially filled while the valence
band is partialy emptied. We note also that the lower the temperature, the closer to a delta
function the derivative becomes.

On another hand, the conductivity at T which is defined as:

σ = qnµ (14)

can be calculated by the Kubo-Greenwood integral (which will not be demonstrated in
this reader):
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σ =

∫ +∞

−∞
σ′(E)

[
− ∂f(E, T )

∂E

]
dE (15)

where σ′ is define as the energy-dependent conductivity, also named ’microscopic’ con-
ductivity and set as

σ′(E) = q2N(E)D(E) (16)

By looking at the shape of the derivative of the Fermi distribution, it can be understood
that the conductivity given by the Kubo-Greewood integral corresponds to the integration
of the energy-dependent conductivity weighted by ”the closeness of the energy level to the
quasi Fermi level”.

By rearranging the basic conductivity expression and then replacing σ and n by the ex-
pressions we have established for them, we arrive at the general Einstein expression in the
case of disordered organic semiconductors outlined in the paper:

µ =
σ

qn
=

q
∫ +∞
−∞ N(E)D(E)

[
−

∂f(E, T )

∂E

]
dE∫ +∞

−∞ N(E)f(E, T ) dE
(17)

We have seen that the density of states in disordered organic semiconductors follows a
Gaussian distribution as a consequence of disorder. Therefore, an electron on a tail state
near the energy gap is more localized than in the center of the distribution, considering
its surrounding available states, and the conductivity in the range of the tail state is nec-
essarily lower. This attenuation can be mathematically described by assuming a similar
Gaussian distribution to that employed for the energy-dependent density of states N(E) for

Figure 1: Shape of the Fermi distribution f(E) (left) and the derivative of the Fermi dis-
tribution (right) as a function of the energy relative to the Fermi energy (shown as the
dotted line), at three different temperatures. For more details, see http://lampx.tugraz.

at/~hadley/ss1/materials/thermo/gp/gp/Fermi-function.html
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the diffusivity at each energy D(E):

D(E) =
D0√
2π∆D

exp

[
− (E − E0)

2

2∆D2

]
(18)

with D0 a prefactor.

Leading then to a energy dependent conductivity as Gaussian distribution itself:

σ′(E) =
σ0√

2π(∆D∆E)
exp

[
− (E − E0)

2

2(∆D∆E)2

]
(19)

In this picture, ∆D is a dimensionless parameter describing the delocalization of states
at the edge of the density of states. If ∆E is small, the states at the edges of the DOS have
very low microscopic conductivity.

The expression of the energy-dependent density of states N(E) and diffusivity D(E) as
Gaussian distribution are then used in this paper in the GER established (17) to study the
mobility µ as a function of ∆E and ∆D.
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